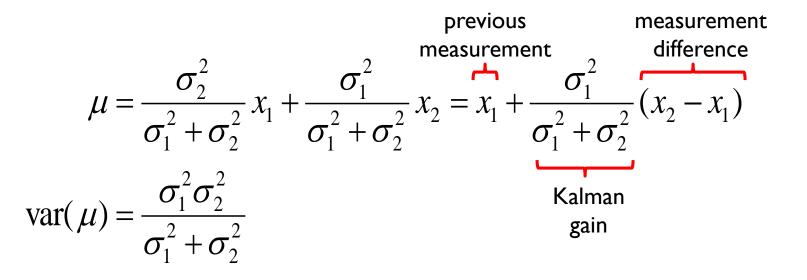
Day 22

Bayes and Kalman Filter

Combining Two Noisy Measurements

recall from the last lecture that the minimum variance estimate for combining two noisy measurements



 claim: the estimate is a special case of the discrete Kalman filter algorithm

Discrete Kalman Filter

estimates the state x of a discrete-time controlled process that is governed by the linear stochastic difference equation

$$x_t = A_t x_{t-1} + B_t u_t + \mathcal{E}_t$$

plant model process model

with a measurement

$$z_t = C_t x_t + \delta_t$$
 measurement model
observation model

Components of a Kalman Filter

A_t

Matrix (nxn) that describes how the state evolves from t to t-1 without controls or noise.

Matrix (nxl) that describes how the control u_t changes the state from t to t-1.

Matrix (kxn) that describes how to map the state x_t to an observation z_t .

$\boldsymbol{\mathcal{E}}_{t}$

Random variables representing the process and measurement noise that are assumed to be independent and normally distributed with covariance R_t and Q_t respectively.

4

- I. Algorithm **Kalman_filter**($\mu_{t-l}, \Sigma_{t-l}, u_t, z_t$):
- 2. Prediction:
- $3. \qquad \mu_t = A_t \mu_{t-1} + B_t u_t$
- $\mathbf{4.} \qquad \overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$
- 5. Correction:
- 6. $K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$
- 7. $\mu_t = \mu_t + K_t(z_t C_t \mu_t)$
- 8. $\Sigma_t = (I K_t C_t) \overline{\Sigma}_t$
- 9. Return $\mu_v \Sigma_t$

Combining Two Noisy Measurements

- combining two noisy measurements of a fixed scalar quantity is a static 1D-state estimation problem
 - the state does not evolve as a function of time and does not depend on any control input

$$A_t = 1, \quad B_t = 0, \quad R_t = 0 \qquad x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$
$$= x_{t-1}$$

 our measurements are direct (noisy) measurements of the state

$$C_t = 1, \quad Q_t = \sigma_t^2 \qquad \qquad z_t = x_t + \delta_t$$

Combining Two Noisy Measurements

start by initializing the Kalman filter with the first measurement and its variance

$$\mu_1 = x_1$$

estimated
state
$$\Sigma_1 = \sigma_1^2$$

covariance

now substitute into the Kalman filter algorithm

Plant or Process Model

 describes how the system state changes as a function of time, control input, and noise

$$x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$

- x_t state at time t
- u_t control inputs at time t
- $\triangleright \mathcal{E}_k$ process noise at time t (assumed Gaussian with covariance R_t)
- A_t state transition model or matrix at time t
- B_t control-input model or matrix at time t
- note that the model is linear and assumes additive Gaussian noise

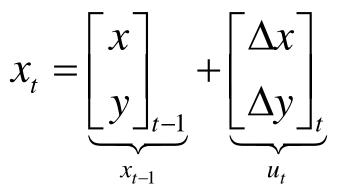
Example: Omnidirectional Robot

- an omnidirectional robot is a robot that can move in any direction (constrained in the ground plane)
 - http://www.youtube.com/watch?v=DPz-ullMOqc
 - http://www.engadget.com/2011/07/09/curtis-boirums-robotic-carmakes-omnidirectional-dreams-come-tr/
- if we are not interested in the orientation of the robot then its state is simply its location ____

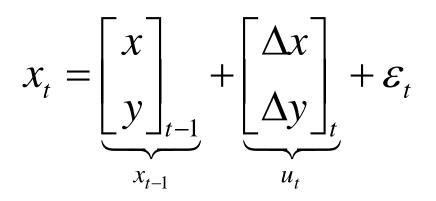
$$x_t = \begin{bmatrix} x \\ y \end{bmatrix}_t$$

Example: Omnidirectional Robot

 a possible choice of motion control is simply a change in the location of the robot



with noisy control inputs



Measurement Model

 describes how sensor measurements vary as a function of the system state

$$z_t = C_t x_t + \delta_t$$

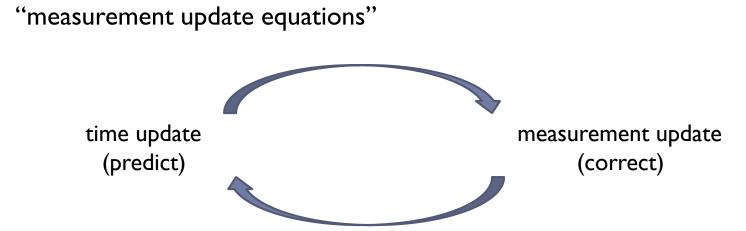
- > z_t sensor measurement at time t
- δ_t sensor noise at time t (assumed Gaussian with covariance Q_t)
- C_t observation model or matrix
- notice that the model is linear and assumes additive Gaussian noise

Kalman Filter

- the Kalman filter is a provably optimal (in terms of leastsquared error) algorithm for fusing sensor measurements to produce an estimate of the state and the state covariance
 - X_t state at time t
 - Σ_t state covariance at time t

Kalman Filter

- the Kalman filter estimates a process in two stages
 - 1. **prediction:** current state and state covariance estimates are projected forward in time to predict the new state and state covariance
 - "time update equations"
 - 2. **correction:** the sensor measurements are incorporated into the predicted state to obtain improved estimates of the state and state covariance



I. Initialization

 choose (guess) initial values for mean state and state covariance estimates

 $\mu_0 \ \Sigma_0$

2. Prediction:

predict the next state using the plant model

$$\overline{\mu}_t = A_t \mu_{t-1} + B_t u_t$$

 predicted state covariance grows (because we are not incorporating the sensor measurements yet)

$$\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$$

• R_t covariance of the plant noise

- 3. **Correction:** correct the predicted state using the sensor measurement
 - expected value of measurements (from measurement model)

$$\overline{z}_t = C_t \overline{\mu}_t$$

b difference between actual and expected measurements

$$r_t = z_t - \overline{z}_t$$

measurement covariance

$$S_t = C_t \ \overline{\Sigma}_t \ C_t^T + Q_t$$

Kalman gain

$$K_t = \overline{\Sigma}_t \ C_t^T \ S_t^{-1}$$

4. State and state covariance:

new state estimate incorporating most recent measurement

$$\mu_t = \overline{\mu}_t + K_t r_t$$

new state covariance estimate

$$\Sigma_t = \left(I - K_t \ C_t\right) \overline{\Sigma}_t$$