Day 22

Bayes and Kalman Filter
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Combining Two Noisy Measurements

» recall from the last lecture that the minimum variance
estimate for combining two noisy measurements

previous measurement
) ) measurement ) difference
o, o A u —
H = 9 2X1+ 2 2X2:X1+ 9 2(X2_X1)
0, -|-02 0, -|-02 o) -|-(72
612022 Kalman
Val’(y) - y) y) gain
o) + 0,

» claim: the estimate is a special case of the discrete Kalman
filter algorithm
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Discrete Kalman Filter

» estimates the state X of a discrete-time controlled process
that is governed by the linear stochastic difference equation

Xt — A\Xt_]_ 1+ Btut _I_gt plant model

process model

with a measurement

_ measurement model
Zt o Ct Xt + d[

observation model
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Components of a Kalman Filter

At Matrix (nxn) that describes how the state evolves from
t to t-1 without controls or noise.

B Matrix (nxl) that describes how the control U, changes
the state from t to t-1.

C Matrix (kxn) that describes how to map the state X; to
Y] an observation z,.

Random variables representing the process and

measurement noise that are assumed to be

§t independent and normally distributed with covariance
R, and Q; respectively.




Kalman Filter Algorithm

Algorithm Kalman_filter( p, 2, , u, z,):

2. Prediction:
flt — A:Ut—l + Btut
e =AZ A +R

B W

Correction:

K, =%C] (C,.ZC/ +Q,)™
p =+ K (2, - C 1)

2, =(1- KtCt)it

NV 0 N o U

Return p, 2,



Combining Two Noisy Measurements

» combining two noisy measurements of a fixed scalar quantity
is a static 1D-state estimation problem

the state does not evolve as a function of time and does not depend
on any control input

A=1 B =0 R=0 x=AX_,+Bu, +¢g
= X1

» our measurements are direct (noisy) measurements of the
state

Ct:]" Qt:Gtz Zt:Xt+5t
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Combining Two Noisy Measurements

» start by initializing the Kalman filter with the first
measurement and its variance

estimated _
H =X

state

estimated 5

state 21 = Ul

covariance

» now substitute into the Kalman filter algorithm
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Plant or Process Model

» describes how the system state changes as a function of time,
control input, and noise

X = A\Xt—l + Btut T &

X, state at time t

U; control inputs at time t

&, process noise at time t (assumed Gaussian with covariance R))
A state transition model or matrix at time t

B, control-input model or matrix at time t

» note that the model is linear and assumes additive Gaussian
noise
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Example: Omnidirectional Robot

» an omnidirectional robot is a robot that can move in any
direction (constrained in the ground plane)

http://www.youtube.com/watch?v=DPz-ullIMOqc

» if we are not interested in the orientation of the robot then
its state is simply its location

X =
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http://www.youtube.com/watch?v=DPz-ullMOqc
http://www.engadget.com/2011/07/09/curtis-boirums-robotic-car-makes-omnidirectional-dreams-come-tr/

Example: Omnidirectional Robot

» a possible choice of motion control is simply a change in the
location of the robot

X

X
Y i

Hf_/
Xt

» with noisy control inputs

X

AX

AY_

t

%f_/

Uy

+ &
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Measurement Model

» describes how sensor measurements vary as a function of the
system state

Z, :Ctxt+5t

Z, sensor measurement at time t
O; sensor noise at time t (assumed Gaussian with covariance Q,)

Ct observation model or matrix

» notice that the model is linear and assumes additive Gaussian
noise
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Kalman Filter

» the Kalman filter is a provably optimal (in terms of least-
squared error) algorithm for fusing sensor measurements to
produce an estimate of the state and the state covariance

X; state at time t
2., state covariance at time t
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Kalman Filter

» the Kalman filter estimates a process in two stages

prediction: current state and state covariance estimates are
projected forward in time to predict the new state and state
covariance

“time update equations”
correction: the sensor measurements are incorporated into the
predicted state to obtain improved estimates of the state and state
covariance

“measurement update equations”

VN
A 4

measurement update
(correct)

time update
(predict)
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Kalman Filter Algorithm

I. Initialization
choose (guess) initial values for mean state and state covariance
estimates
Ho
2
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Kalman Filter Algorithm

2. Prediction:

predict the next state using the plant model

= Ap_ + B

predicted state covariance grows (because we are not
incorporating the sensor measurements yet)

zt — Atzt—lAtT + Rt

R, covariance of the plant noise
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Kalman Filter Algorithm

3. Correction: correct the predicted state using the sensor
measurement

expected value of measurements (from measurement model)
z, =C. i,

difference between actual and expected measurements

=124, —Z

measurement covariance

S,=C, X Cl +Q,

Kalman gain
K¢ = it C:tT St_l
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Kalman Filter Algorithm

4. State and state covariance:

new state estimate incorporating most recent measurement
M = M + Kt I
new state covariance estimate

2 :(I -K, Ct)it
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